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1 Introduction

This paper describes and analyzes experiments we performed for the Medical Records track in the 2012 Text
REtrieval Conference (TREC). We mainly investigated three research problems:

1. Evidence Aggregation: In last year’s track there were two different methods in general for obtaining a
visit ranking out of reports (smaller document units), i.e., (A) using reports as indexing and retrieval
units and then converting a report ranking into a visit ranking, and (B) using visits as indexing and
retrieval units by concatenating reports at the very first stage and then obtain a visit ranking directly.

Method A avoids the potential problem of varying visit document length, while Method B naturally
aggregates evidence scatter over multiple reports and easily obtains a visit ranking. It is unclear which
method is better based on all reported results. Thus, we compared the two approaches, tried various
score aggregation methods for (A), and combined both approaches in a way that further improved the
system performance.

2. Expansion Sources: We tested a variety of external collections (ranging from general web datasets
to domain-specific thesauri, and from Megabyte datasets to Terabyte datasets) for query expansion,
compared their effectiveness, and obtained useful insights into the data.

3. Retrieval Models: We tested several statistical IR models (proven to be effective on news and web
collections) on this medical collection, and explored ways to combine these models to address different
aspects of task. For instance, we used MRF model to model term proximity since most medical concepts
are phrases. We also used a mixture of relevance models to obtain various relevant expansion terms
covered by different expansion collections respectively, which is expect to significantly alleviate the
vocabulary mismatch between medical terminologies.

For TREC submissions, we tested systems that combined multiple IR models, leveraged diverse expansion
sources, and used various evidence aggregation methods. We implemented all the retrieval models in the
Indri1 retrieval system.

1http://www.lemurproject.org/indri/
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2 System Features

In this section, we describe the retrieval models and evidence aggregation strategies.

2.1 Retrieval Model

In this section, we briefly describe the three retrieval models, namely the query likelihood language model,
MRF model, and mixture of relevance models, which serve as the underpinning of our retrieval systems.

Baseline Model
Our baseline model is the query likelihood language model as formulated below:

score(D,Q) = logP (Q|D) =
n∑

i=1

log
tfqi,D + µ

tfqi,C
|C|

|D|+ µ
, (1)

where qi is the ith term in query Q, n is the total number of terms in Q, |D| and |C| are the document and
collection lengths in words respectively, tfqi,D and tfqi,C are the document and collection term frequencies
of qi respectively, and µ is the Dirichlet smoothing parameter.

Markov Random Field Model
Medical queries usually contain phases that describe conditions, symptoms, drug names, treatments, etc.
These query terms are likely to occur in close proximity to each other in relevant documents. Thus, we use
the Markov random field (MRF) model proposed by Metzler and Croft [9] to model term dependencies. We
use their sequential dependence model in particular. Following Metzler and Croft [9], we set the feature
weights (λT , λO, λU ) to (0.8, 0.1, 0.1).

Mixture of Relevance Models
Queries specified by the search users can have a “vocabulary mismatch” with the content in a medical report
since there are many different ways to express a medical concept (e.g., “hearing loss”, “hearing impairment”,
“difficult of hearing”, and even “deafness” are all semantically related, but they only have one common term
at the most). The consequence is that the system may have a relatively low recall if there is a “vocabulary
mismatch”. We can alleviate this problem and improve our baseline retrieval model by expanding the query
with additional “related” terms. These related terms (also called expansion terms) can be derived from a
relevance model θQ, which is usually built upon top-ranked k documents for the query in the target collection
(i.e., the same collection used for retrieval).

Thus, in this paper we derive expansion terms based on their weights p which are estimated by:

pi =
k∑

j=1

exp{
tfei,Dj

|Dj |
+ log

|C|
dfei,C

+ score(Dj , Q)}, (2)

where score(Dj , Q) is the query likelihood score for the top jth feedback document in the initial retrieval set
ranked by Equation 1, tfei,Dj is the term frequency of ei in document Dj , dfei,C is the document frequency
of ei in collection C, and |Dj | and |C| are document and collection lengths in words respectively. This
formula estimates the importance of term ei based on its term frequency, inverse document frequency, and
feedback document scores. m terms with highest scores p are selected as expansion terms, and they form
our estimated relevance model θ̂Q. Note that we also normalize p so that we have an estimated probability

P (w|θ̂Q) for each word w.
Relevance modeling can be further improved upon by leveraging information in other document collec-

tions. Specifically, following Diaz and Metzler [2], we can form relevance models for two or more additional
collections, then expand the query using those models.

To achieve better performance, we linearly interpolate the mixture of relevance models with the maximum
likelihood (ML) query estimate by formulating the equation:

P (w|θQ) = λQ
#(w,Q)

|Q|
+

∑
C

λCP (w|θ̂Q,C), (3)
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where the first part is the weighted ML query estimate for word w and the second part represents the mixture
of relevance models. In particular, P (w|θ̂Q,C) is the probability of w in the estimated relevance model θ̂ built
upon top-ranked documents in expansion collection C. λ’s are collection weights and λQ +

∑
C λC = 1. For

TREC submissions, we set λ’s to (0.7, 0.1, 0.1, 0.1) and use top 10 terms from top 50 feedback documents.
We implement Equation 3 using Indri in the same way as our previous work [12]. We denoted this model as
MRM.

A Combined Model
We linearly combine MRF and MRM to get our third retrieval model. The scoring function looks like

P (w|θQ) = λQ ·MRF+
∑
C

λCP (w|θ̂Q,C), (4)

which is similar to Equation 3. The difference is that we replace the ML query estimate with MRF. The
new retrieval model is expected to benefit from term dependence modeling as well as query expansion.
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Figure 1: Merging results from two different retrieval methods.

2.2 Multi-level Evidence

In the aforementioned retrieval models, “document” (i.e., D) is a broad term that could indicate different
granularities of a visit: the text of all reports associated with the visit, a single report from the visit, or just
one field within a single report from the visit. Thus, in this section we describe how we leverage evidence
from each of these to come up with a final document score.

Field Level Evidence
The main fields in a report are the doctor’s notes and the fields that contain diagnosis codes. Here we describe
how we leverage ICD-9 codes in the language model, and how we remove some extraneous information and
extract useful information from doctor’s notes.

Code Expansion: We expand ICD codes in the “admit diagnosis” and “discharge diagnosis” fields with
their corresponding descriptions2 to introduce additional useful words into the documents. We refer this
feature as ICD in the following sections.

Negation Removal: The “report text” filed contains clinical narratives. One distinct feature of clinical
narratives is that negation phrases are frequently used to claim the absence of certain conditions or symptoms
[1], such as “cannot tell”, “not clear”, “without evidence”, etc. Negations may cause retrieval false positives.
Thus, we use NegEx3 [4], an open-source clinical negation detection tool, to remove all negated portions
of the sentences from the medical records before indexing. We refer this feature as NEG in the following
sections.

Age/Gender Filtering: We use simple regular expressions to search for age/gender indication words
and phrases in both the“report text” filed and the topics. We use the extracted age and gender information

2https://drchrono.com/public_billing_code_search
3http://code.google.com/p/negex/
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to filter from the retrieval set visits that do not meet the inclusion criteria specified in the topics. We refer
this feature as AGF in the following sections.

Previous work [7, 8, 3, 12] have shown that the above three medical features are quite useful. Thus, they
would be the default features for our systems unless otherwise specified.

Report Level Evidence
Evidence in a visit may mainly exist in only a small proportion of all the associated reports. This allows
us to rely on the strongest evidence of a visit to estimate its relevance. Thus, we use reports as the initial
retrieval units (i.e., building an index for reports and applying the retrieval model to each report), and
then transform a report ranking into a visit ranking based on the strongest report-level evidence, which is
equivalent to using the following report score merging method for ranking visits:

scoreRbM(V,Q) = fRbM({score(rV1 , Q), score(rV2 , Q), ...}), (5)

where rVj is a report associated with visit V based on the report-to-visit mapping, score(rVj , Q) is the
language modeling score of the report with respect to query Q, and fRbM is the function for aggregating
the scores. We will try MAX, SUM, and ANZ for fRbM in Section 3. We name this evidence aggregation
strategy Retrieval-before-Merging (RbM). The merging process involved in RbM corresponds to “merging
I” in Figure 1.

Visit Level Evidence
Evidence may also spread across multiple reports, especially when the information need is a complex one.
Thus, our second strategy to aggregate evidence is to first merge reports from a single visit field by field
into a visit document and then construct an index for visit documents. With this strategy, the language
model built on a merged document can naturally combine the evidence scattered across multiple reports.
Furthermore, this strategy can directly lead to a ranking of visits which are the desired retrieval units.
We call this second evidence aggregation strategy Merging-before-Retrieval (MbR). The merging process
involved in MbR corresponds to “merging II” in Figure 1.

Top-level Evidence
RbM and MbR as described above are two different strategies for aggregating evidence and ranking visits.
RbM and MbR complement each other in that the former can naturally aggregate evidence spreading across
multiple reports (which would be challenging to do at the report-level) while the latter can leverage the
strongest evidence (which may become less apparent after reports merging in MbR) to estimate relevance.
This leads to our third evidence aggregation method in which we take advantage of both RbM and MbR
by merging their visit rankings, as demonstrated by “merging III” in Figure 1. We call third strategy as
Visit-Ranking-Merging (VRM). The merging method (i.e., “Merging III” in Figure 1) is defined by:

scoreVRM(V,Q) = fVRM(scoreRbM(V,Q), scoreMbR(V,Q)), (6)

where scoreRbM(V ) and scoreMbR(V ) are the language modeling scores for visit V with respect to query Q in
the two visit rankings obtained by RbM and MbR respectively, fVRM is the function for score aggregation,
and scoreVRM(V,Q) is the final score of visit V in the merged ranking. We will try different methods for
fVRM such as CombMNZ, CombSUM, and CombMAX in Section 3 below.

2.3 Experimental Setup

We explore the best system feature settings for 2012 TREC submission by performing cross-validation on the
test collection of 2011 medical records track. Once we find the best settings as will be described in Section 3,
we train the systems on the whole 2011 test collection and generate runs for 2012 topics.

We use the Indri retrieval system for indexing and retrieving. In particular, we use the Porter stemmer
to stem words in both reports and queries, and use a simple standard medical stoplist [5] for stopping words
in queries only. Then we conduct 5-fold cross-validation and use top 1000 retrieved visits for each query to
evaluate our system under different settings. In each iteration, we train our system on 28 queries to obtain
the best parameter setting for MAP by sweeping over the range of [1000, 20000] at a step size of 1000 for the
Dirichlet smoothing parameter (i.e., µ in Equation 1), and then generate a ranking for each of the remaining
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7 queries based on the trained system. When complete, we have full rankings for all 35 topics as a test set.
We evaluate the system based on the MAP, bpref, P10, and Rprec over all 35 topics.

We train our systems on MAP though bpref is the primary evaluation metric for 2011 medical track.
There are two reasons: 1) training on MAP is most commonly used in IR to improve retrieval performance; 2)
we find that training on MAP improves the retrieval performance on other metrics as well while training on
bpref does not improve the overall performance. Thus, MAP and bpref will both be the primary evaluation
measures in this work. In fact, MAP correlates well with bpref as we will show in the next section.

To access the statistical significance of differences in the performance of two systems, we perform one-
tailed paired t-test for MAP (since we train systems on MAP).

3 Experiments and Results

This section describes experiments, presents the evaluation results, and discusses the research findings.

3.1 Retrieval before Merging

As mentioned in Section 2.2, we have several options for choosing the score merging function fRbM in Equa-
tion 5 (i.e., “merging I” in Figure 1) for RbM. Now we describe them formally below:

MAX:
scoreRbM(V,Q) = max({score(rVj , Q)})

SUM:
scoreRbM(V,Q) =

∑
j

score(rVj , Q)

ANZ:

scoreRbM(V,Q) =

∑
j score(r

V
j , Q)

|{score(rVj , Q) ̸= 0}|

where again score(rVj , Q) is the language modeling score of the report rVj (associated with visit V ) with
respect to queryQ. ANZ stands for “Averaging over Non-Zeros”, meaning we only consider reports containing
at least one query term. MAX, SUM, and ANZ are similar to CombMAX, CombSUM, and CombANZ
proposed by Fox and Shaw [11]. However, CombMAX, CombSUM and CombANZ were used for merging
multiple retrieval runs.

Table 1 shows that MAX is superior to SUM and ANZ. This confirms our assumption that we can rely
on the strongest evidence (i.e, the most relevant report) of a visit to estimate the relevance of that visit.
Thus, we will use MAX for score merging in RbM by default in this paper.

MAX (selected) SUM ANZ
MAP 0.416 0.110 0.317

Table 1: Comparison of score merging methods for RbM.

3.2 Evidence Aggregation

Similarly, we also have several options for choosing the score merging function fVRM in Equation 6 (i.e.,“
merging III” in Figure 1) for VRM, such as CombMNZ, CombANZ, and CombMAX [11]. In our case, we
are only merging two rankings. Thus, these merging methods are specified as follows:

CombMNZ:
scoreVRM(V,Q) = NV · [scoreRbM(V,Q) + scoreMbR(V,Q)]

CombSUM:
scoreVRM(V,Q) = scoreRbM(V,Q) + scoreMbR(V,Q)
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CombMAX:
scoreVRM(V,Q) = max(scoreRbM(V,Q), scoreMbR(V,Q))

CombANZ:

scoreVRM(V,Q) =
scoreRbM(V,Q) + scoreMbR(V,Q)

NV

where scoreVRM(V,Q) is the merged score for visit V , and scoreRbM(V,Q) and scoreMbR(V,Q) are the scores
for V in two different visit rankings as demonstrated in Figure 1, and NV is the number of rankings that have
V in the top 1200 retrieved visits (We cut off the merged rank list at rank 1000 to get the final ranking). Note
that scoreMbR/RbM(V,Q) = 0 if V does not appear in the top 1200 retrieved. We compare the performance of
these merging methods using the primary evaluation measures in Table 2. As we can see, CombMNZ and
CombSUM achieve comparable performance, and are better than CombMAX and CombANZ. Thus, we can
infer that a good aggregation strategy for “merge III” should favor visits that appear in both rankings. We
use CombMAX and CombANZ as the merging methods for VRM.

Method MAP bpref
CombMNZ (selected) 0.446 0.564
CombSUM (selected) 0.446 0.563
CombMAX 0.427 0.559
CombANZ 0.356 0.510

Table 2: Comparison of score merging methods for VRM.

Next, we compare the three evidence aggregation strategies as described in Section 2.2. Table 3 shows
that VRM is significantly better than MbR and RbM on MAP, which means that merging visit rankings as
the top-level evidence aggregation strategy boosts the retrieval performance significantly.

System MAP bpref P10 Rprec
MbR 0.393 0.530 0.565 0.403
RbM 0.416 0.551 0.594 0.434
VRM 0.446△ 0.563 0.635 0.456

Table 3: Comparison of evidence aggregation methods. △ indicates that the MAP difference between VRM
and MbR/RbM is statistically significant (p < 0.05).

3.3 Selection of Expansion Collections

We test several expansion collections. In addition to the medical records that are the target of retrieval,
we leverage information in several other large, widely-available collections: ImageCLEF 2009 Medical Image
Retrieval Task dataset [10], TREC 2007 Genomics Track dataset [6], TREC 2009 ClueWeb09 Category B
dataset (excluding Wikipedia pages), a Wikipedia dataset (containing those excluded Wikipedia pages), and
the 2012 Medical Subject Headings (MeSH). Table 4 provides detailed information about these datasets.
In particular, we use MeSH for expansion in the way as described in [13]. Moreover, the CLEF dataset
consists of 74,902 medical images. We crawled 5,704 full-text CLEF articles associated with these images
as the actual external collection used in this work. We choose these collections because there are existing
topics and relevance judgments for analysis and because we want to compare the effects of different sources
on retrieval performance.

For simplicity, we use aggregation strategy MbR (without any medical features described in Section )
and retrieval model MRM with one expansion collection at a time to explore the expansion effectiveness of
each collection as show in Table 5.

As we can see in Table 5, ImageCLEF and Wikipedia have comparable improvement over the base-
line, though the former is more medical-related, much smaller, and less noisy than the latter. The same
situation applies to Genomics and ClueWeb09. However, Genomics and ClueWeb09 are much larger than
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Collection # documents vocabulary size avg doc length
Medical* 100,866 105 423
MeSH n/a n/a n/a
ImageCLEF 5,704 105 6,495
Genomics 162,259 107 6,595
Wikipedia 5,957,529 106 1,305
ClueWeb09 44,262,894 107 756

Table 4: Collection Statistics.

System MAP Significance bpref P10
Baseline (B) 0.353 0.469 0.506
ImageCLEF (I ) 0.371 (+5.1%) 0.492 0.544
Wikipedia (W ) 0.376 (+6.5%) 0.500 0.550
ClueWeb09 (C ) 0.390 (+11%) >{B} 0.513 0.556
MeSH (S ) 0.391 (+11%) >{B, I} 0.496 0.547
Medical (M ) 0.393 (+11%) >{B} 0.520 0.535
Genomics (G) 0.395 (+12%) >{B, W} 0.524 0.553

Table 5: Evaluation of query expansion. “X > S” means the MAP difference between system X and any
system specified in set S is statistically significant. The statistical significance is determined using one-tailed
paried t-test on queries and p-value < 0.05.

runID
Features Scores

MRF
MRM

VRM MAP infAP infNDCG Rprec P10
Genomics+Medical+ClueWeb MeSH

udelSUM
√ √ √

CombSUM 0.413 0.286 0.578 0.419 0.592
udelMNZ

√ √ √
CombMNZ 0.412 0.285 0.576 0.418 0.594

udelMRF
√ √

CombMNZ 0.408 0.280 0.572 0.415 0.604
udelMED

√ √
CombMNZ 0.398 0.269 0.564 0.410 0.590

Table 6: Feature settings and results for TREC submissions.

ImageCLEF and Wikipedia respectively, and Genomics and ClueWeb09 both have significant improvement
over the baseline. Genomics is also significantly better than Wikipedia. Thus, we can infer that expansion
effectiveness depends on both the quality (i.e., content similarity to the target collection) and size of the
expansion collection.

MeSH expansion is different from general expansion in that it relies on a controlled vocabulary from
which expansion terms derived are not as diversified as those from a general expansion collection. For
instance, for the query “hearing loss”, it is difficult for MeSH to provide related expansion terms such as
“cochlear”, “noise”, “auditory”, and “binaural” (top-ranked terms from Genomics), “cerumen”, “canals”,
and “tympanic” (from Medical), “vestibular”, “ear”, and “stape” (from ImageCLEF). Some of these terms
do appear in the MeSH trees at upper levels, however, it is hard to find a link to them, i.e., discriminating
them from other unrelated tree nodes. Simply including all visited concepts along the path is likely to
cause query drift. Moreover, these terms normally appear in phrase concepts having different meanings than
individual terms.

MeSH expansion is quite restrictive, yet is comparable to top performing single expansions and is signifi-
cantly better than the baseline and ImageCLEF. This is most likely because our MeSH expansion emphasizes
modeling term proximity which is a big advantage of any medical thesaurus-based expansion over general
expansion. Another merit of MeSH expansion is that, if used properly, it rarely includes bad expansion
terms, while we have no control of the quality of each expansion term from general expansions.

Based on Table 5, we choose Genomics, Medical, MeSH, and ClueWeb09 (i.e., the top-performing expan-
sion collections) for our MRM model.

3.4 TREC Submissions and Results

Base on all the previous investigations, we select and combine multiple features for our TREC submissions as
shown in Table 6. The settings for udelMRF and udelMED are for evaluating the impact of MRF and MeSH
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(a) udelSUM is below TREC medians for 3/47 top-
ics on infNDCG.

(b) udelSUM is below TREC medians for 4/47 top-
ics on P10.

Figure 2: Comparison with TREC results.

udelMNZ udelMRF udelMED
udelSUM 0.1635 0.0190 0.0005
udelMNZ − 0.0335 0.0008
udelMRF − − 0.0181

Table 7: Pairwise one-tail paired t-test on infAP

respectively. Table 6 also shows the evaluation scores averaged over 47 official topics. We pick udelSUM,
the system with the highest MAP score, for further analysis. Figure 2 shows the comparison of infNDCG
and P10 scores with TREC results (combining both automatic and manual runs). As we can see, system
udelSUM is above TREC medians for the majority of topics. We observe similar results for the other three
runs.

Table 7 shows the results of pairwise one-tail paired t-test on infAP for our four submitted runs. The
significance scores indicate that MRF and MeSH are both very effective system features.

4 Conclusion and Future Work

For 2012 Medical Records track, we investigated various evidence aggregation methods, explored different
query expansion collections, and combined multiple statistical IR models. Our systems perform well com-
pared with the aggregated TREC results. In particular, we found the following to be very effective: 1)
external expansion using diverse sources, 2) models that incorporate term proximity information, 3) evi-
dence aggregation at both report and visit levels. For future work, we plan to investigate why our systems
did not do well on a few hard topics.
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